Cari Blog Ini

Selasa, 24 Januari 2012

SEJARAH HYDROPOWER - PLTA

Hydropower lebih dikenal di Indonesia dengan sebutan Pembangkit Listrik Tenaga Air (PLTA). Pembangkit tersebut menghasilkan tenaga listrik dengan menfaatkan kekuatan gravitasi dari air terjun atau arus air. PLTA ini termasuk bentuk energi terbarukan (renewable energy) yang digunakan secara luas.
Dibandingkan pembangkit listrik tipe lain, PLTA tergolong pembangkit yang tidak menghasilkan limbah secara langsung. Kelebihan lain adalah level emisi gas rumah kaca karbondioksida (CO2) dari PLTA yang sangat rendah dibandingkan dengan pembangkit yang menggunakan bahan bakar dari fosil.   
Dengan besarnya keuntungan tersebut, banyak negara membangun PLTA untuk memenuhi kebutuhan listrik mereka. Data 2006 menunjukkan bahwa kapasitas PLTA yang tersebar di seluruh dunia idengan 777 GWe telah mampu memasok 2.998 TWh. Artinya, hampir 20% kebutuhan listrik dunia berasal dari  PLTA atau sekitar 88% sumber energi terbarukan berasal dari pemanfaatan tenaga air.  
Namun sejumlah pertanyaan muncul, sejak kapan sebenarnya PLTA itu berdiri? Tenaga air telah dimanfaatkan orang-orang kuno terutama untuk menumbuk gandum atau dimanfaatkan keperluan lainnya. Tetapi pada pertengahan  1770-an, seorang insinyur Perancis, Bernard Forest de Belidor, memublikasikan buku yang berjudul Architecture Hydraulique. Dalam buku itu, dia menjelaskan tentang mesin hidrolik aksis vertikal dan horizontal.

Selanjutnya pada abab ke-19, ge­nerator elektrik dikembangkan dan kini dikombinasikan dengan mesin hidrolik. Permintaan meningkat seiring Revolusi Industri yang mendorong pembangunan. Tepat pada 1878, untuk pertama kalinya di dunia dibangun rumah pembangkit hydroelectricity dengan nama Cragside di Northumberland, Inggris. Tiga tahun kemudian atau tepatnya pada 1881, pusat Pembangkit Listrik Tenaga Air, Schoelkopf Power Station No 1 dekat Niagara Falls, Amerika Serikat (AS).
Setelah itu, beberapa PLTA dibangun. Pembangkit listrik hidroelektrik Edison atau diberi nama Vulcan Street Plant beroperasi pada 30 September 1882 dengan kapasitas 12,5 kilowatt di Appleton, Winconsin, AS. Sampai 1886, sebanyak 45 Pembangkit Listrik Tenaga Air dibangun di AS dan Kanada.  Bahkan memasuki 1889, PLTA tumbuh dengan cepat dan saat itu AS memiliki 200 PLTA.

Pada awal abad ke-20, banyak PLTA skala kecil dibangun perusahaan komersial di daerah pegunungan dekat area metropolitan. Kota Grenoble, Prancis pun untuk pertama kalinya menggelar pameran bertajuk ‘International Exhibition of Hydropower and Tourism’ yang didatangi jutaan pengunjung. Selanjutnya, pada 1920, sebanyak 40% pembangkit di AS merupakan PLTA hingga mendorong pemerintah membuat Federal Power Act yang dijadikan undang-undang dan dasar hukum.
Federal Power Act mengatur pembentukan Komisi Pembangkit Federal yang bertugas mengatur PLTA di sumber air dan tanah negara bagian. Ketika skala PLTA kian besar, bendungan dari pembangkit dikembangkan bukan hanya untuk memenuhi kebutuhan listrik, tetapi termasuk mengendalikan banjir, irigasi, dan navigasi. Seiring dengan begitu bermanfaatnya PLTA untuk memenuhi bermacam kebutuhan, pemerintah negara bagian pun menggelontorkan anggaran untuk pembangunan PLTA skala besar dan PLTA dimiliki pemerintah. Pada 1933, dibangun PLTA Tennessee Valley Authorty dan Bonneville Power Administration pada 1937.
Biro Reklamasi AS yang bertanggung jawab terhadap irigasi wilayah barat AS juga membangun PLTA besar pada 1928 dengan nama Hoover Dam (Bendungan Hoover). Para insinyur dari Korps Angkatan Darat AS juga terlibat dalam pengembengan PLTA dengan turut mendukung penuntasan pembangunan Bendungan Bonneville pada 1937 yang sebelum dikenal sebagai pusat pengendali banjir utama.

Pengembangan PLTA terus berlanjut sepanjang abad ke-20. Bahkan sebutan hydropower diberi nama white coal (batu bara putih) karena sebelumnya banyak pembangkit listrik yang mengandalkan bahan baku batu bara. Tepat pada 1936, PLTA Bendungan Hoover dengan kapasitas 1.345 MW menjadi PLTA pertama terbesar di dunia. Memasuki 1942 dibangun  PLTA Grand Coulee Dam dengan kapasitas lebih besar atau 6809 MW.

Pengembangan PLTA terus merambah ke benua lain dan masuk ke benua Afrika. Pada 1984, pemerintah Afrika Selatan meresmikan PLTA Bendungan Itaipu dan menghasilkan 14.000 MW.  Namun ‘Negara Tirai Bambu’ membuat kejutan pada 2008 dengan meresmikan PLTA Bendungan Three Gorges dengan kapasitas 22.500 MW. Sejak itu, sejumlah negara seperti Norwegia, Republik Demokrasi Kongo, Paraguay, dan Brazil juga mengembangkan PLTA yang mampu memenuhi kebutuhan listrik di negara mereka hingga 85%.    

Sejarah PLTA di Tanah Air dimulia pada 1917, Biro Tenaga Air (Waterkraht burean) di bawah  Jawatan Perkeretaapian Negara (Steratz foorwegen) dari perusahaan negara (Gouvemementsbedrijven) diubah kedudukannya menjadi Jawatan Tenaga Air dan Listrik (Dienstvoor Waterkracht in Electriciteit). Dengan begitu, jawatan tersebut mulai bergerak dalam pengembangan kelistrikan hingga penggunaan secara ekonomis dari sumber-sumber tenaga air tersedia.
Jawatan tersebut  tak hanya mengurus pemberian lisensi-lisensi untuk tenaga air dan listrik, tetapi juga mengawasi pula kesamaan instalasi - instalasi listrik di seluruh Indonesia.  Pada 1906,  PLTA Pakar dengan sumber air dari sungai  Cikapundung dengan kekuatan 800 KW diresmikan. PLTA tersebut dikelola Maskapai listrik Bandung (Bandungte Electriciteits Masatsehappij) dan dapat dianggap sebagai pengolahan pertama untuk pemberian energi listrik dengan penggunaan tenaga air.
Pada 1920 didirikan Perusahaan Listrik Umum Bandung sekitarnya (Electriciteitsbederjif Bandung en omstreken, singkatnya GEBEO), dengan modal dari pemerintah dan swasta. Kemudian, maskapai tersebut ambil alih PLTA Pakar di Bandung dan PLTA Cijedil (2x174 KW dan 2x220 KW) di Cianjur. Selanjutnya bekerjasama dengan perusahaan listrik negara untuk memasok listrik kepada masyarakat. Direksi bagian swasta dipegang oleh perusahaan swasta NV Maintz & Co. Pada 1934, Dienstvoor Waterkraht an Electriciteit diubah menjadi Electriciteitswezen (Kelistrikan) singkatnya E.W.
Perusahaan Tenaga Air Ne­ga­ra Da­­­ta­­ran Tinggi Bandung (Landiswaterkrachtbedijf Bandung en) mempunyai dua grup PLTA-PLTA, yaitu Bengkok (3x1050 KW) dan Dago (1x 700KW) pada 1923 dengan menggunakan sumber air dari Sungai Cikapundung, selanjutnya  Plengan (3x1050 KW (1923), ditambah 2000 KW (1962) dan Lamajan dengan kapasitas 2x6400 KW (1924), dan  ditambah 6400 KW pada 1933 dengan sumber air Sungai  Cisangkuy dan Cisarua.
Sebagai cadangan air untuk musin kemarau dibangun situ Cileunca (9,89 Juta M3 air) pada  1922 dan Cipanunjang (21,8 Juta M3 air) pada 1930. Untuk mencapai jumlah banyaknya air seperti tersebut,  maka bendungan  Pulo, Playangan dan Cipanunjang' dipertinggi pada 1940, sedangkan situ-situnya mendapat tambahan air dari sungai-sungai sekitarnya.
Dari PLTA Plengan dibangun jalur transmisi 30 KV sepanjang 80 Km ke GI-GI Sumadra, Garut dan Singaparna untuk menghantarkan tenaga listrik ke bagian Priangan Timur. Selanjutnya dari GI Kiaracondong dibangun jalur transmisi 30 KV ke GI Rancaekek hingga Sumedang ke Priangan Utara - Timur dan kemudian hingga PLTA Parakan. Kini tegangan Sumedang - Parakan sudah menjadi 70 KV.

Dari PLTA Lamajan pada 1928 dibangun jalur transmisi 30 KV (kemudian 70 KV) ke GI Padalarang, Purwakarta dan Kosambi untuk daerah Priangan Barat dan pada tahun 1966 dari Kosambi ke Cawang. Di tahun 1920 dibangun PLTU Dayeuhkolot (2x750 KW) untuk keperluan pemancar radio ke luar negeri, namun pada 1940 dibongkar dan kemudian menjadi PLTD Dayeuhkolot (2x550 KW). Kini seluruhnya telah tiada dan bangunan menjadi GI Dayeuhkolot, gudang, dan bengkel Dayeuhkolot yang sudah ada duluan. Pada 1928 dibangun Central Electriciteit Laboratorium, singkat CEL di komplek Sekolah Tinggi Tinggi (Technische Hooge School), yang meliputi pekerjaan testing dan perbaikan peralatan listrik. Kini CEL telah diserahkan kepada Institut Tehnologi Bandung (ITB ).

Pada 1962 beroperasi PLTA Cikalong (3 x 6400 KW) bekerja paralel dengan PLTA-PLTA yang telah ada. Kini Sektor Priangan mempunyai 4 Gardu Induk utama yaitu: GI North di Utara, GI Cigereleng di Selatan, GI Cibeurem di Barat dan GI Sukamiskin di Timur.

Sektor Cirebon
Berhubungan dengan rencana pembangunan PLTA Parakan (4x2500KW) di tahun 1939 didirikan Perusahaan Tenaga Air Negara Cirebon (Lanbswaterkrachtbedrijf Cirebon). Kota Cirebon dan sekitarnya dahulu mendapat energi listrik dari PLTD Kebonbaru kepunyaan maskapai Gas Hindia Belanda (Nederland Indische Gas Maatsekapij, singkatnya N.I.E.M). Setelah PLTA Parakan beroperasi di tahun 1957, maka PLTD Kebonbaru praktis bersifat standby. Kini di Sektor Cirebon pada tahun 1982 beroperasi PLTG Sunyaragi (2x25,125 KW). Perusahaan Tenaga Air Negara Jawa Barat
Perusahaan ini mempunyai PLTA Ubrug (2x5400 KW) di tahun 1924 ditambah dengan 1x6300 KW di tahun lima puluhan dan PLTA Kracak (2x5500 KW) di tahun 1929, kemudian ditambah dengan 1x5500 KW. Kedua PLTA tersebut dengan peran­taraan transmisi 70 kV dihubungkan bersama ke GI di Bogor dan dari sini dihantarkan dengan lin transmisi 70 kV ke Jakarta dengan GI-GI Cawang, Muster Cornelis (Jatinegara), Weltercoler (Gambir), dan Ancol. PLTU Gambir di pinggir kali Ciliwung adalah kepunyaan Maskapai Gas Hindia Belanda (NIGM) dan merupakan sentral uap pertama yang dibangun tahun 1897 untuk Jakarta dan sekitarnya. Pada 1931, sentral uap tersebut  (3200 + 3000 + 1350 KW) diambil alih dan kini tidak ada lagi.
Dari PLTA Ubrug pada 1926 dibangun jalur transmisi 30 KV ke GI Lembursitu sepanjang 16 km untuk Sukabumi dan sekitarnya. Dari PLTA Kracak pada 1931 dibangun jalur transmisi 30 kV sepanjang 57 km untuk Rangkasbitung dan sekitarnya. PLTA Ubrug dan PLTA Kracak kini termasuk Sektor Bogor yang didirikan di tahun 1946. Sentral-sentral tambahan setelah perang dunia II, adalah PLTD Karet (12x1000 KW), PLTD Ancol (12x1000 KW), yang dua-duanya tak beroperasi lagi karena rusak, selanjutnya PLTD Senayan (8x2500 KW), yang sebagian mesin-mesinnya telah rusak dan sisanya selalu stand by, tahun 1961 PLTU Priok (2x25 + 2x50 MW) tahun 1962, PLTU Muara karang dan PLTG Pulo Gadung yang masing-masing beroperasi penuh.

PLTA Jatiluhur (6 x 25 MW) pada 1964 yang mempunyai status otorita, memberi energi listrik via jalur transmisi 150 kV ke Bagian Timur dengan GI Cigereleng dan via lin transmisi 150 kV ke Bagian Barat dengan GI Cawang. Kemudian PLTA Saguling (4 x 175 MW) yang beroperasi pada 1986.

KLASIFIKASI SALURAN TRANSMISI BERDASARKAN TEGANGAN

Selama ini ada pemahaman bahwa yang dimaksud transmisi adalah proses penyaluran energi listrik dengan menggunakan tegangan tinggi saja. Bahkan ada yang memahami bahwa transmisi adalah proses penyaluran energi listrik dengan menggunakan tegangan tinggi dan melalui saluran udara (over head line). Namun sebenarnya, transmisi adalah proses penyaluran energi listrik dari satu tempat ke tempat lainnya, yang besaran tegangannya adalah Tegangan Ultra Tinggi (UHV), Tegangan Ekstra Tinggi (EHV), Tegangan Tinggi (HV), Tegangan Menengah (MHV), dan Tegangan Rendah (LV).
•     Berfungsi menyalurkan energi listrik dari satu gardu induk ke gardu induk  lainnya.
•    Terdiri dari konduktor yang direntangkan antara tiang-tiang (tower) melalui isolator-  isolator, dengan sistem tegangan tinggi.
•    Standar tegangan tinggi yang berlaku di Indonesia adalah : 30 KV, 70 KV dan 150 KV.

Beberapa hal yang perlu diketahui:
•   Transmisi 30 KV dan 70 KV yang ada di Indonesia, secara berangsur-angsur      mulai ditiadakan (tidak digunakan).
•   Transmisi 70 KV dan 150 KV ada di Pulau Jawa dan Pulau lainnya di Indonesia.
     Sedangkan transmisi 275 KV dikembangkan di Sumatera.
•   Transmisi 500 KV ada di Pulau Jawa.

Di Indonesia, konstruksi transmisi terdiri dari :
•     Menggunakan kabel udara dan kabel tanah, untuk tegangan rendah, tegangan    
      menengah dan tegangan tinggi.
•     Menggunakan kabel udara untuktegangan tingg dan tegangan ekstra tinggi.

Pembahasan tentang transmisi ditinjau dari klasifikasi tegangannya:

1.   SALURAN UDARA TEGANGAN EKSTRA TINGGI (SUTET) 200 KV – 500 KV
•     Pada umumnya digunakan pada pembangkitan dengan kapasitas di atas 500
  MW.
•    Tujuannya adalah agar drop tegangan dan penampang kawat dapat direduksi
     secara maksimal, sehingga diperoleh operasional yang efektif dan efisien.
•     Permasalahan mendasar pembangunan SUTET adalah: konstruksi tiang (tower)
     yang besar dan tinggi, memerlukan tapak tanah yang luas, memerlukan isolator  
     yang banyak, sehingga pembangunannya membutuhkan biaya yang besar.
•     Masalah lain yang timbul dalam pembangunan SUTET adalah masalah sosial,
yang akhirnya berdampak pada masalah pembiayaan, antara lain: Timbulnya protes dari masyarakat yang menentang pembangunan SUTET, Permintaan ganti rugi tanah untuk tapak tower yang terlalu tinggi tinggi, Adanya permintaan ganti rugi sepanjang jalur SUTET dan lain sebagainya.
•     Pembangunan transmisi ini cukup efektif untuk jarak 100 km sampai dengan 500
      km.

2. SALURAN UDARA TEGANGAN TINGGI (SUTT) 30 KV – 150 KV
• Tegangan operasi antara 30 KV sampai dengan 150 KV.
• Konfigurasi jaringan pada umumnya single atau double sirkuit, dimana 1 sirkuit terdiri dari 3 phasa dengan 3 atau 4 kawat. Biasanya hanya 3 kawat dan penghantar netralnya digantikan oleh tanah sebagai saluran kembali.
• Apabila kapasitas daya yang disalurkan besar, maka penghantar pada masing-masing phasa terdiri dari dua atau empat kawat (Double atau Qudrapole) dan Berkas konduktor disebut Bundle Conductor.
• Jika transmisi ini beroperasi secara parsial, jarak terjauh yang paling efektif adalah 100 km.
• Jika jarak transmisi lebih dari 100 km maka tegangan jatuh (drop voltaje) terlalu besar, sehingga tegangan diujung transmisi menjadi rendah.
• Untuk mengatasi hal tersebut maka sistem transmisi dihubungkan secara ring system atau interconnection system. Ini sudah diterapkan di Pulau Jawa dan akan dikembangkan di Pulau-pulau besar lainnya di Indonesia.

3. SALURAN KABEL TEGANGAN TINGGI (SKTT) 30 KV – 150 KV
SKTT dipasang di kota-kota besar di Indonesia (khususnya di Pulau Jawa), dengan beberapa pertimbangan :
• Di tengah kota besar tidak memungkinkan dipasang SUTT, karena sangat sulit mendapatkan tanah untuk tapak tower.
• Untuk Ruang Bebas juga sangat sulit dan pasti timbul protes dari masyarakat, karena padat bangunan dan banyak gedung-gedung tinggi.
• Pertimbangan keamanan dan estetika.
• Adanya permintaan dan pertumbuhan beban yang sangat tinggi.
Jenis kabel yang digunakan:
• Kabel yang berisolasi (berbahan) Poly Etheline atau kabel jenis Cross Link Poly Etheline (XLPE).
• Kabel yang isolasinya berbahan kertas yang diperkuat dengan minyak (oil paper impregnated).

Inti (core) kabel dan pertimbangan pemilihan:
• Single core dengan penampang 240 mm2 – 300 mm2 tiap core.
• Three core dengan penampang 240 mm2 – 800 mm2 tiap core.
• Pertimbangan fabrikasi.
• Pertimbangan pemasangan di lapangan.

Kelemahan SKTT:
• Memerlukan biaya yang lebih besar jika dibanding SUTT.
• Pada saat proses pembangunan memerlukan koordinasi dan penanganan yang kompleks, karena harus melibatkan banyak pihak, misal : pemerintah kota (Pemkot) sampai dengan jajaran terbawah, PDAM, Telkom, Perum Gas, Dinas Perhubungan, Kepolisian, dan lain-lain.
Panjang SKTT pada tiap haspel (cable drum), maksimum 300 meter. Untuk desain dan pesanan khusus, misalnya untuk kabel laut, bisa dibuat tanpa sambungan sesuai kebutuhan.

Pada saat ini di Indonesia telah terpasang SKTT bawah laut (Sub Marine Cable) dengan tegangan operasi 150 KV, yaitu:
• Sub marine cable 150 KV Gresik – Tajungan (Jawa – Madura).
• Sub marine cable 150 KV Ketapang – Gilimanuk (Jawa – Bali).
Beberapa hal yang perlu diketahui:
• Sub marine cable ini ternyata rawan timbul gangguan.
• Direncanakan akan didibangun sub marine cable Jawa – Sumatera.
• Untuk Jawa – Madura, saat ini sedang dibangun SKTT 150 KV yang dipasang (diletakkan) di atas Jembatan Suramadu.

4. SALURAN UDARA TEGANGAN MENENGAH (SUTM) 6 KV – 30 KV
• Di Indonesia, pada umumnya tegangan operasi SUTM adalah 6 KV dan 20 KV.
Namun secara berangsur-angsur tegangan operasi 6 KV dihilangkan dan saat ini hampir semuanya menggunakan tegangan operasi 20 KV.
• Transmisi SUTM digunakan pada jaringan tingkat tiga, yaitu jaringan distribusi yang menghubungkan dari Gardu Induk, Penyulang (Feeder), SUTM, Gardu Distribusi, sampai dengan ke Instalasi Pemanfaatan (Pelanggan/ Konsumen).
• Berdasarkan sistem pentanahan titik netral trafo, efektifitas penyalurannya hanya pada jarak (panjang) antara 15 km sampai dengan 20 km. Jika transmisi lebih dari jarak tersebut, efektifitasnya menurun, karena relay pengaman tidak bisa bekerja secara selektif.
• Dengan mempertimbangkan berbagai kondisi yang ada (kemampuan likuiditas atau keuangan, kondisi geografis dan lain-lain) transmisi SUTM di Indonesia melebihi kondisi ideal di atas.

5. SALURAN KABEL TEGANGAN MENENGAH (SKTM) 6 KV – 20 KV
Ditinjau dari segi fungsi , transmisi SKTM memiliki fungsi yang sama dengan transmisi SUTM. Perbedaan mendasar adalah, SKTM ditanam di dalam tanah.
Beberapa pertimbangan pembangunan transmisi SKTM adalah:
• Kondisi setempat yang tidak memungkinkan dibangun SUTM.
• Kesulitan mendapatkan ruang bebas (ROW), karena berada di tengah kota dan pemukiman padat.
• Pertimbangan segi estetika.
Beberapa hal yang perlu diketahui:
• Pembangunan transmisi SKTM lebih mahal dan lebih rumit, karena harga kabel yang jauh lebih mahal dibanding penghantar udara dan dalam pelaksanaan pembangunan harus melibatkan serta berkoordinasi dengan banyak pihak.
• Pada saat pelaksanaan pembangunan transmisi SKTM sering menimbulkan masalah, khususnya terjadinya kemacetan lalu lintas.
• Jika terjadi gangguan, penanganan (perbaikan) transmisi SKTM relatif sulit dan memerlukan waktu yang lebih lama jika dibandingkan SUTM.
• Hampir seluruh (sebagian besar) transmisi SKTM telah terpasang di wilayah PT. PLN (Persero) Distribusi DKI Jakarta & Tangerang.

6. SALURAN UDARA TEGANGAN RENDAH (SUTR) 40 VOLT – 1000 VOLT
Transmisi SUTR adalah bagian hilir dari sistem tenaga listrik pada tegangan distribusi di bawah 1000 Volt, yang langsung memasok kebutuhan listrik tegangan rendah ke konsumen.
Di Indonesia, tegangan operasi transmisi SUTR saat ini adalah 220/ 380 Volt.

Radius operasi jaringan distribusi tegangan rendah dibatasi oleh:
• Susut tegangan yang disyaratkan.
• Luas penghantar jaringan.
• Distribusi pelanggan sepanjang jalur jaringan distribusi.
• Sifat daerah pelayanan (desa, kota, dan lain-lain).
• susut tegangan yang diijinkan adalah + 5% dan – 10 %, dengan radius pelayanan berkisar 350 meter.
Saat ini transmisi SUTR pada umumnya menggunakan penghantar Low Voltage Twisted Cable (LVTC).

7. SALURAN KABEL TEGANGAN RENDAH (SKTR) 40 VOLT – 1000 VOLT
Ditinjau dari segi fungsi, transmisi SKTR memiliki fungsi yang sama dengan transmisi SUTR. Perbedaan mendasar adalah SKTR di tanam didalam di dalam tanah. Jika menggunakan SUTR sebenarnya dari segi jarak aman/ ruang bebas (ROW) tidak ada masalah, karena SUTR menggunakan penghantar berisolasi.
Penggunaan SKTR karena mempertimbangkan:
• Sistem transmisi tegangan menengah yang ada, misalnya karena menggunakan transmisi SKTM.
• Faktor estetika.
Oleh karenanya transmisi SKTR pada umumnya dipasang di daerah perkotaan, terutama di tengah-tengah kota yang padat bangunan dan membutuhkan aspek estetika.
Dibanding transmisi SUTR, transmisi SKTR memiliki beberapa kelemahan, antara
lain:
• Biaya investasi mahal.
• Pada saat pembangunan sering menimbulkan masalah.
• Jika terjadi gangguan, perbaikan lebih sulit dan memerlukan waktu relatif lama untuk perbaikannya.

KARATERISTIK BEBERAPA JENIS BAHAN PENGHANTAR LISTRIK


Seperti telah kita ketahui, bahwa untuk pelaksanaan penyaluran energi listrik dapat dilakukan dengan dua cara, yaitu berupa saluran udara dan kabel tanah. Pada saluran Udara, terutama hantaran udara telanjang biasanya banyak menggunakan kawat penghantar yang terdiri atas: kawat tembaga telanjang (BCC, singkatan dari Bare Cooper Cable), Aluminium telanjang (AAC, singkatan dari All Aluminium Cable), Campuran yang berbasis aluminium (Al-Mg-Si), Aluminium berinti baja (ACSR, singkatan dari Aluminium Cable Steel Reinforced) dan Kawat baja yang berisi lapisan tembaga (Cooper Weld).

Sedangkan pada saluran kabel tanah, biasanya banyak menggunakan kabel dengan penghantar jenis tembaga dan aluminium, perkembangan yang sangat dominan pada saluran kabel tanah adalah dari sisi bahan isolasinya, dimana pada saat awal banyak menggunakan isolasi berbahan kertas dengan perlindungan mekanikal berupa timah hitam, kemudian menggunakan minyak ( jenis kabel ini dinamakan GPLK atau Gewapend Papier Lood Kabel yang merupakan standar belanda dan NKBA atau Normal Kabel mit Bleimantel Aussenumheullung yang merupakan standar jerman, dan jenis bahan isolasi yang terkini adalah isolasi buatan berupa PVC (Polyvinyl Chloride) dan XLPE (Cross-Linked Polyethylene). Jenis bahan isolasi PVC dan XLPE pada saat ini telah berkembang pesat dan merupakan bahan isolasi yang andal.

Di waktu yang lalu, bahan yang banyak digunakan untuk saluran listrik adalah jenis tembaga (Cu). Namun karena harga tembaga yang tinggi dan tidak stabil bahkan cenderung naik, aluminium mulai dilirik dan dimanfaatkan sebagai bahan kawat saluran listrik, baik saluran udara maupun saluran kabel tanah. Lagipula, kawat tembaga sering dicuri karena bahannya dapat dimanfaatkan untuk pembuatan berbagai produk lain.
Suatu ikhtisar akan disampaikan dibawah ini mengenai berbagai jenis logam atau campurannya yang dipakai untuk kawat saluran listrik, yaitu:
1.    Tembaga elektrolitik, yang harus memenuhi beberapa syarat normalisasi, baik mengenai daya hantar listrik maupun mengenai sifat-sifat mekanikal.
2.    Brons, yang memiliki kekuatan mekanikal yang lebih besar, namun memiliki daya hantar listrik yang rendah. Sering dipakai untuk kawat pentanahan.
3.    Aluminium, yang memiliki kelebihan karena materialnya ringan sekali. Kekurangannya adalah daya hantar listrik agak rendah dan kawatnya sedikit kaku. Harganya sangat kompetitif. Karenanya merupakan saingan berat bagi tembaga, dan dapat dikatakan bahwa secara praktis kini mulai lebih banyak digunakan untuk instalasi-instalasi listrik arus kuat yang baru dari pada menggunakan tembaga.
4.    Aluminium berinti baja, yang biasanya dikenal sebagai ACSR (Aluminium Cable Steel Reinforced), suatu kabel penghantar aluminium yang dilengkapi dengan unit kawat baja pada inti kabelnya. Kawat baja itu diperlukan guna meningkatkan kekuatan tarik kabel. ACSR ini banyak digunakan untuk kawat saluran hantar udara.
5.    Aldrey, jenis kawat campuran antara aluminium dengan silicium (konsentrasinya sekitar 0,4 % – 0,7 %), Magnesium (konsentrasinya antara 0,3 % - 0,35 %) dan ferum (konsentrasinya antara 0,2 % - 0,3 %). Kawat ini memiliki kekuatan mekanikal yang sangat besar, namun daya hantar listriknya agak rendah.
6.    Cooper-weld, suatu kawat baja yang disekelilingnya diberi lapisan tembaga.
7.    Baja, bahan yang paling banyak digunakan sebagai kawat petir dan juga sebagai kawat pentanahan.
Berdasarkan ikhtisar diatas, dapat dikatakan bahwa bahan yang terpenting untuk saluran penghantar listrik adalah tembaga dan aluminium, sehingga kedua bahan tersebut banyak digunakan sebagai kawat pengantar listrik, baik saluran hantar udara maupun kabel tanah.

BAHAN PENYEKAT :
Sifat-Sifat Bahan Penyekat
Bahan penyekat digunakan untuk memisahkan bagian-bagian yang bertegangan. Untuk itu pemakaian bahan penyekat perlu mempertimbangkan sifat kelistrikanya. Di samping itu juga perlu mempertimbangkan sifat termal, sifat mekanis, dan sifat kimia.
Sifat kelistrikan mencakup resistivitas, permitivitas, dan kerugian dielektrik. Penyekat membutuhkan bahan yang mempunyai resistivitas yang besar agar arus yang bocor sekecil mungkin (dapat diabaikan). Yang perlu diperhatikan di sini adalah bahwa bahan isolasi yang higroskopis hendaknya dipertimbangkan penggunaannya pada tempat-tempat yang lembab karena resistivitasnya akan turun. Resistivitas juga akan turun jika tegangan yang diberikan naik.
Besarnya kapasitansi bahan isolasi yang berfungsi sebagai dielektrik ditentukan oleh permitivitasnya, di samping jarak dan luas permukaannya. Besarnya permitivitas udara adalah 1,00059, sedangkan untuk zat padat dan zat cair selalu lebih besar dari itu. Apabila bahan isolasi diberi tegangan bolak-balik maka akan terdapat energi yang diserap oleh bahan tersebut. Besarnya kerugian energi yang diserap bahan isolasi tersebut berbanding lurus dengan tegangan, frekuensi, kapasitansi, dan sudut kerugian dielektrik. Sudut tersebut terletak antara arus kapasitif dan arus total (Ic + Ir).

Suhu juga berpengaruh terhadap kekuatan mekanis, kekerasan, viskositas, ketahanan terhadap pengaruh kimia dan sebagainya. Bahan isolasi dapat rusak diakibatkan oleh panas pada kurun waktu tertentu. Waktu tersebut disebut umur panas bahan isolasi. Sedangakan kemampuan bahan menahan suhu tertentu tanpa terjadi kerusakan disebut ketahanan panas. Menurut IEC (International Electrotechnical Commission) didasarkan atas batas suhu kerja bahan, bahan isolasi yang digunakan pada suhu di bawah nol (missal pada pesawat terbang, pegunungan) perlu juga diperhitungkan karena pada suhu di bawah nol bahan isolasi akan menjadi keras dan regas. Pada mesin-mesin listrik, kenaikan suhu pada penghantar dipengaruhi oleh resistansi panas bahan isolasi. Bahan isolasi tersebut hendaknya mampu meneruskan panas yang didesipasikan oleh penghantar atau rangkaian magnetik ke udara sekelilingnya.

Kemampuan larut bahan isolasi, resistansi kimia, higroskopis, permeabilitas uap, pengaruh tropis, dan resistansi radio aktif perlu dipertimbangkan pada penggunaan tertentu. Kemampuan larut diperlukan dalam menentukan macam bahan pelarut untuk suatu bahan dan dalam menguji kemampuan bahan isolasi terhadap cairan tertentu selama diimpregnasi atau dalam pemakaian. Kemampuan larut bahan padat dapat dihitung berdasarkan banyaknya bagian permukaan bahan yang dapat larut setiap satuan waktu jika diberi bahan pelarut. Umumnya kemampuan larut bahan akan bertambah jika suhu dinaikkan.
Ketahanan terhadap korosi akibat gas, air, asam, basa, dan garam bahan isolasi juga bervariasi antara satu pemakaian bahan isolasi di daerah yang konsentrasi kimianya aktif, instalasi tegangan tinggi, dan suhu di atas normal. Uap air dapat memperkecil daya isolasi bahan. Karena bahan isolasi juga mempunyai sifat higroskopis maka selama penyimpanan atau pemakaian diusahakan agar tidak terjadi penyerapan uap air oleh bahan isolasi, dengan memberikan bahan penyerap uap air, yaitu senyawa P2O5 atau CaC12. Bahan yang molekulnya berisi kelompok hidroksil (OH) higrokopisitasnya relative besar dibanding bahan parafin dan polietilin yang tidak dapat menyerap uap air. Bahan isolasi hendaknya juga mempunyai permeabilitas uap (kemampuan untuk dilewati uap) yang besar, khususnya bagi bahan yang digunakan untuk isolasi kabel dan rumah kapasitor. Di daerah tropis basah dimungkinkan tumbuhnya jamur dan serangga. Suhu yang tinggi disertai kelembaban dalam waktu lama dapat menyebabkan turunnya kemampuan isolasi. Oleh karena bahan isolasi hendaknya dipisi bahan anti jamur (paranitro phenol, dan pentha chloro phenol).

Pemakaian bahan isolasi sering dipengaruhi bermacam-macam energi radiasi yang dapat berpengaruh dan mengubah sifat bahan isolasi. Radiasi sinar matahari mempengaruhi umur bahan, khususnya jika bersinggungan dengan oksigen. Sinar ultra violet dapat merusak beberapa bahan organic. T yaitu kekuatan mekanik elastisitas. Sinar X sinar-sinar dari reactor nuklir, partikel-partikel radio isotop juga mempengaruhi kemampuan bahan isolasi. Sifat mekanis bahan yang meliputi kekuatan tarik, modulus elastisitas, dan derajat kekerasan bahan isolasi juga menjadi pertimbangan dalam memilih suatu jenis bahan isolasi.

Pembagian Kelas Bahan Penyekat
Bahan penyekat listrik dapat dibagi atas beberapa kelas berdasarkan suhu kerja maksimum, yaitu sebagai berikut:

1. Kelas Y, suhu kerja maksimum 90°C
Yang termasuk dalam kelas ini adalah bahan berserat organis (seperti Katun, sutera alam, wol sintetis, rayon serat poliamid, kertas, prespan, kayu, poliakrilat, polietilen, polivinil, karet, dan sebagainya) yang tidak dicelup dalam bahan pernis atau bahan pencelup lainnya. Termasuk juga bahan termoplastik yang dapat lunak pada suhu rendah.

2. Kelas A, suhu kerja maksimum 150°C
Yaitu bahan berserat dari kelas Y yang telah dicelup dalam pernis aspal atau kompon, minyak trafo, email yang dicampur dengan vernis dan poliamil atau yang terendam dalam cairan dielektrikum (seperti penyekat fiber pada transformator yang terendam minyak). Bahan -bahan ini adalah katun, sutera, dan kertas yang telah dicelup, termasuk kawat email (enamel) yang terlapis damar-oleo dan damar-polyamide.

3. Kelas E, suhu kerja maksimum 120°C
Yaitu bahan penyekat kawat enamel yang memakai bahan pengikat polyvinylformal, polyurethene dan damar epoxy dan bahan pengikat lain sejenis dengan bahan selulosa, pertinaks dan tekstolit, film triacetate, film dan serat polyethylene terephthalate.

4. Kelas B, suhu kerja maksimum 130°C
Yaitu Yaitu bahan non-organik (seperti : mika, gelas, fiber, asbes) yang dicelup atau direkat menjadi satu dengan pernis atau kompon, dan biasanya tahan panas (dengan dasar minyak pengering, bitumin sirlak, bakelit, dan sebagainya).

5. Kelas F, suhu kerja maksimum 155°C
Bahan bukan organik dicelup atau direkat menjadi satu dengan epoksi, poliurethan, atau vernis yang tahan panas tinggi.

6. Kelas H, suhu kerja maksimum 180°C
Semua bahan komposisi dengan bahan dasar mika, asbes dan gelas fiber yang dicelup dalam silikon tanpa campuran bahan berserat (kertas, katun, dan sebagainya). Dalam kelas ini termasuk juga karet silikon dan email kawat poliamid murni.

7. Kelas C, suhu kerja diatas 180°C
Bahan anorganik yang tidak dicelup dan tidak terikat dengan substansi organic, misalnya mika, mikanit yang tahan panas (menggunakan bahan pengikat anorganik), mikaleks, gelas, dan bahan keramik. Hanya satu bahan organik saja yang termasuk kelas C yaitu politetra fluoroetilen (Teflon).

Macam-macam bahan penyekat
·         Bahan penyekat bentuk padat, bahan listrik ini dapat dikelompokkan menjadi beberapa macam, diantaranya yaitu: bahan tambang, bahan berserat, gelas, keramik, plastik, karet, ebonit dan bakelit, dan bahan-bahan lain yang dipadatkan.
·         Bahan penyekat bentuk cair, jenis penyekat ini yang banyak digunakan pada teknik listrik adalah air, minyak transformator, dan minyak kabel.
·         Bahan penyekat bentuk gas, yang sering digunakan untuk keperluan teknik listrik diantaranya : udara, nitrogen, hidrogen, dan karbondioksida.
LOGAM NON FERRO

A. Seng
Pemurnian diperoleh secara elektrolitis dari bahan oksida seng (ZnO). Penemuan mencapai kadar 97,75% Zn. Warnanya abu-abu muda dengan titik cair 419°C dan titik didih 906°C. Daya mekanis tidak kuat. Seng dipakai sebagai pelindung dari karat, karena lebih tahan terhadap karat daripada besi. Pelapisan dengan seng dilakukan dengan cara galvanis seperti pada tembaga. Seng juga mudah dituang, dan sering dipakai sebagai pencampur bahan lain yang sukar dituang, misalnya tembaga.
Dalam teknik listrik seng banyak dipakai untuk bahan selongsonng elemen kering (kutub negatifnya), batang-batang (elektroda) elemen galvani.
Tahanan jenis 0,12 ohm mm^2/m Dalam perdagangan seng dijual dalam bentuk pelat yang rata atau bergelombang. Juga dalam bentuk kawat dan tuangan dalam bentuk balok.


B. Timah Hitam
Timah hitam terkenal dengan nama timbel. Berat jenis timbel 11,4 dan tahanan jenis 0,94. Logam ini lunak, dapat dicetak dengan cara dicairkan. Titik cair timbel 325°C. Titik didihnya 1560°C, warnanya abu-abu. Timbel tahan terhadap udara, air, air garam, asam belerang.
Dalam teknik listrik, timbel dipakai sebagai pelindung untuk kabel listrik dalam tanah atau pada kabel listrik dasar laut. Karena sifatnya tahan air dan tahan air garam maka kabel yang dibungkus dengan timbel tidak menjadi rusak dipakai di laut. Tetapi kabel menjadi terlalu berat dan mudah terluka/tergores karena sifat lunaknya. Selain itu timbel kurang tahan terhadap getaran. Karena getaran, timbel dapat menjadi rusak dan menyebabkan air masuk ke dalam kabel. Oleh sebab itu pemasangan kabel bersalut timbel hendaknya dijauhkan dari tempat yang banyak getaran , misalnya dekat rel kereta api, jembatan, dan sebagainya. Timbel juga tidak tahan terhadap asam cuka, asam sendawa, dan kapur. Adonan beton yang masih basah juga merusak timbel, maka kabel bersalut timbel yang dipasang pada beton harus diberi perlindungan.
Kecuali sebagai bahan pelindung kabel, kabel juga dipakai untuk pelat-pelat aki, kutub-kutub aki, penghubung sel-sel aki, dan sebagainya. Timbel yang dicampur timah putih dipakai untuk bahan soldir.
Untuk memperoleh kekuatan mekanis yang lebih baik sebagai pembalut kabel, maka timbel dicampur dengan tembaga, antimony, cadmium dan sebagainya.
Timbel mengandung racun, maka setelah bekerja dengan timbel tangan harus dicuci bersih sebelum dipakai untuk memegang makanan.

C. Timah Putih
Timah putih biasa disebut dengan timah. Keadaannya hampir sama dengan timbel. Warnanya putih mengkilat. Titik cairnya lebih rendah dari timbel, yaitu 232°C. Berat jenis 7,3 tahanan jenis 0,15 ohm mm^2/m, keadaan lunak. Timah tidak beracun seperti halnya timbel dan dipakai sebagai pelapis atau bahan campuran.
Sebagai bahan mentah timah diperdagangkan, dituang dalam bentuk balok, sebagai barang setengah jadi, dibuat pelat yang sangat tipis (kurang dari 0,2 mm) dengan nama staniol. Dan yang lebih tipis lagi dengan nama fuli timah. Kadang-kadang timah dicampur dengan timbel. Untuk ini apabila akan digunakan untuk pembungkus makanan, kadar timbel tidak boleh dari 10%.
Dalam teknik listrik, timah banyak dipakai sebagai pelapis tembaga pada hantaran yang bersekat karet dan hantaran tanah. Macam-macam peralatan listrik dilapis dengan timah untuk menahan karet.Karena sifatnya yang lunak, kalau ditekan oleh ring pada pengerasan mur atau sekrup, timah dapat betul-betul rata sehingga hubungan (kontak) menjadi betul-betul baik, mengurangi tahanan dan meniadakan bunga api (missal pada sepatu kabel, kontak penghubung, rel-rel kotak sekering dan sebagainya.
Pelat-pelat tipis dipakai pada kapasitor. Kegunaan lain dari timah adalah sebagai bahan patri, yaitu dengan mencampurnya dengan timbel.

D. Tembaga
Tembaga adalah bahan tambang yang diketemukan sebagai bijih tembaga yang masih bersenyawa dengan zat asam, asam belerang atau bersenyawa dengan kedua zat tadi. Dalam bijih tembaga juga terkandung batu-batu. Tembaga terdapat di Amerika Utara, Chili, Siberia, Pegunungan Ural, Irian Jaya dan sebagainya.

1. Pembuatan Tembaga
Pembuatan tembaga dilakukan dalam beberapa tahap. Tembaga terikat secara kimia di dalam bijih pada bahan yang disebut batu gang. Untuk mengumpulkan bijih-bijh itu biasanya dulakukan dengan membersihkannya dalam cairan berbuih, di mana di situ ditiupkan udara. Ikatan tembaga dari bijih yang digiling sampai halus dicampur dengan air dan zat-zat kimia sehingga menjadi pulp (bubur) pada suatu bejana silinder. Zat-zat kimia (yang disebut Reagens) berfungsi untuk mempercepat terpisahnya tembaga. Pada bubur tersebut ditiupkan udara atau gas sehingga timbul buih yang banyak. Bagian-bagian logam yang kecil sekali melekat pada gelembung udara atau gas tersebut. Di situ terdapat semacam kincir yang berputar dengan kecepatan sedemikian rupa sehingga gaya sentrifugal melemparkan buih tersebut dengan mineral keluar tepi bejana sehingga terpisah dari batu gang. Setelah proses tersebut logam dihilangkan airnya. Proses selanjutnya adalah pencarian di dalam suatu dapur mantel dengan jalan membakarnya dengan arang debu. Di sini dapat dipisahkan zat asam dan batu-batu silikon dan besinya dioksidasikan menjadi terak yang mengapung pada copper sulifida.
Pengolahan tembaga selanjutnya adalah dengan membawa isi dapur (yang disebut matte) ke konverter mendatar. Di sini belerang akan terbakar oleh arus udara yang kuat. Kemudian tembaga yang disebut blister sekali lagi dicairkan di dalam sebuah dapur anode. Dalam proses ini (yang disebut polen) terjadi proes pengurangan zat asam.Dari dapur anode cairan segera dituangkan ke dalam cetakan, menjadi pelat-pelat anode. Pelat anode ini setelah didinginkan diangkat ke rumah tangki (bejana beton yang dilapisi timbel antimor pada bagian dalamnya) untuk diolah dengan cara elektrolisis, di mana batang tembaga tersebut dipergunakan sebagai anoda dan lempengan tembaga tipis murni sebagai katode. Selama terjadinya proses elektrolisis, anoda mengurai perlahan-lahan dan tembaga yang kemurniannya tinggi menempel pada katode. Untuk mendapatkan tembaga yang kemurniannya tinggi maka tembaga tersebut harus menjalani proses cair dalam dapur saringan.

2. Sifat – Sifat Tembaga
Produksi tembaga sebagian besar dipergunakan dalam industri kelistrikan, karena tembaga mempunyai daya hantar listrik yang tinggi. Kotoran yang terdapat dalam tembaga akan memperkecil/mengurangi daya hantar listriknya. Selain mempunyai daya hantar listrik yang tinggi, daya hantar panasnya juga tinggi; dan tahan karat. Oleh karena itu tembaga juga dipakai untuk kelengkapan bahan radiator, ketel, dan alat kelengkapan pemanasan. Tembaga mempunyai sifat dapat dirol, ditarik, ditekan, ditekan tarik dan dapat ditempa (meleable).
Karena pemakaian meningkat, bahan cadangan untuk mengganti tembaga sudah dipikirkan. Bahan pengganti yang agak mendekati adalah alumunium (Ai). Akan tetapi daya hantar listrik maupun daya hantar panas dari alumunium lebih rendah dibandingkan tembaga. Titik cair tembaga adalah 1083° Celcius, titik didihnya 2593° Celcius, massa jenis 8,9, kekuatan tarik 160 N/mm^2. Kegunaan lain dari tembaga ialah sebagai bahan untuk baut penyolder, untuk kawat-kawat jalan traksi listrikl (kereta listrik, trem, dan sebagainya), unsur hantaran listrik di atas tanah, hantaran penangkal petir, untuk lapis tipis dari kolektor, dan lain-lain.


E. Alumunium
Logam ini sangat diperlukan dalam pembuatan kapal terbang, mobil, motor, dan dalam teknik listrik. Alumunium diperoleh dari boksit yang didapat di Suriname, di Amerika utara dan negara-negara lain. Selain boksit, alumunium juga diperoleh dari kriolit yang berasal dari Greenland dan Batu Labrado, yang ditemukan di Norwegia.

1. Pembuatan Alumunium
Biasanya tanah alumunium bersama soda dicairkan di bawah tekanan pada suhu 160° Celcius, di mana terjadi suatu persenyawaan alumunium, dan kemudian sodanya ditarik sehingga berubah menjadi oksida alumunium yang masih mempunyai titik cair tinggi (2200° Celcius). Titik cair turun menjadi sebesar 100° Celcius kalau dicampur kriolit. Proses cair itu terjadi dalam sebuah dapur listrik yang terdiri atas sebuah bak baja plat, di bagian dalam dilapisi dengan arang murni, dan diatasnya terdapat batang-batang arang yang dicelupkan ke dalam campuran tersebut. Arus listrik yang mengalir akan mengangkat kriolit menjadi cair oleh panas yang terjadi karena arus listrik yang mengangkat dalam cairan kriolit tersebut adalah sebagai bahan pelarut untuk oksidasi alumunium. Alumunium (titik cair 650° C) dipisahkan oleh arus listrik itu ke dasar dan diambil. Proses cair itu sebenarnya lama sekali dan perlu arus listrik yang besar (10.000-30.000A). Oleh karena itu pembuatan alumunium hanya dilakukan di negara-negara yang listriknya murah.

F. Logam Mulia
1. Perak
Perak, emas dan platina termasuk logam mulia. Perak terdapat dalam campuran logam-logam lain, misalnya timbel, timah atau seng. Setelah melalui proses pemurnian dapat diperoleh perak murni. Logam ini lunak, ulet dan mengkilat, dapat dicetak dan ditarik. Titik cairnya di bawah titik cair tembaga, yaitu 960°C, berat jenis 10,5 dan tahanan jenis perak 0,016° Ohm mm2 /m. Berarti daya hantar listriknya lebih dari tembaga. Perak merupakan logam yang mempunyai daya hantar terbaik.
Perak termasuk bahan yang sukar beroksidasi, dan warnanya putih. Karena harganya agak mahal maka pemakaiannya dalam teknik listrik untuk hal-hal yang khusus dan penting saja. Misalnya, untuk kumparan pengukur. Pesawat ini membutuhkan ketelitian dan ruangan sempit sehingga membutuhkan penghantar dengan daya hantar yang terbaik dan tidak berkarat.
Jadi perak dibuiat kawat dengan ukuran yang sangat lembut, yang disebut benang perak. Karena titik cairnya di bawah tembaga,maka perak dipergunakan juga sebagai pengaman lebur. Untuk titik-titik kontak banayak digunakan perak. Pemasangannya mudah karena perak mudah cair dan mudah dipatrikan pada logam lain, misalnya besi, tembagadan sebagainya. Perak juga tidak berkarat.

2. Emas
Emas terdapat dalam persenyawaan dengan logam-logam lain. Pemurniannya dikerjakan secara kimia. Emas murni sangat lunak. Kekerasannya dapat dipertinggi dengan mencampurkan perak. Banyaknya perak dalam campuran initi menentukan besarnya karat. Emas murni dinyatakan sebagai 24 karat. Emas 22 karat berarti dalam 24 bagian ada 22 bagian emas, sisanya perak 2 bagian. Warnanya kuning mengkilat. Berat jenis 19,3. Titik cair 1063°C.Dalam perdagangan emas berbentuk balok tuangan dan lembaran seperti kertas, sangat tipis. Karena mahalnya, umumnya emas jarang dipakai dalam teknik listrik.

3. Platina
Platina merupakan bahan yang tidak berkarat, dapat ditempa, regang, tetapi sukar dicairkan dan tahan dari sebagian besar bahan-bahan kimia; merupakan logam terberat dengan berat jenis 21,5. Titik cairnya mencapai 1774°C, sedang tahanan jenisnya 0,42 ohm.mm^2/m. Warnanya putih keabu-abuan. Pemurnian platina dilakukan secara kimia. Platina dapat ditarik menjadi kawat halus dan filamen yang tipis. Platina dipakai dalam laboratorium, untuk unsur pemanas tungku-tungku listrik bila membutuhkan panas yang tinggi, dapat mencapai diatas 1300° C. Pemakaian platina dalam teknik listrik antara lain untuk peralatan laboratorium yang tahan karat, kisi tabung radio yang khusus dan sebagainya. Hampir kesemuanya itu untuk kepentingan dalam laboratorium yang sangat membutuhkan kecermatan kerja pesawat. Untuk dipakai secara umum platina terlalu mahal